LOGiN PANeL

«    July 2025    »
MoTuWeThFrSaSu
 123456
78910111213
14151617181920
21222324252627
28293031 
PoLL





eBooks Tutorials Templates Plugins Scripts Applications GFX Collections SCRiPTMAFiA.ORG
Support SCRiPTMAFiA.ORG
Support SCRiPTMAFiA.ORG
LaST oN NULLeD.org
OBS Studio 31.1.0 File size: 150 MB OBS Studio is an application designed for gamers, artists, developers or amateur users who enjoy ...
The Other (2025) 720p WEB H264-JFF The Other 2025 720p WEB H264-JFF Unable to conceive, a couple seeks to build a family with a young orphan, survivor of ...
IDimager Photo Supreme 2025.2.2.7907 (x64) Multilingual IDimager Photo Supreme 2025.2.2.7907 (x64) Multilingual File size: 118.1 MB
AnyBurn Professional 6.5 Multilingual Portable File Size: 31.5 MB AnyBurn Pro is a light weight but professional CD / DVD / Blu-ray burning software that every one ...
Office Tool Plus 10.24.68 Multilingual Office Tool Plus 10.24.68 Multilingual File Size: 21 MB
AnyBurn Professional 6.5 Multilingual File Size: 5.31 MB AnyBurn Pro is a light weight but professional CD / DVD / Blu-ray burning software that every one ...

RSS
RSS

FRiENDS
Nulled.org Software 8TM URL Shortener RoboForex Forex market




Naved M IoT-enabled Convolutional Neural Networks Techniques and App 2023

Category: eBooks



Naved M  IoT-enabled Convolutional Neural Networks Techniques and App 2023

Naved M IoT-enabled Convolutional Neural Networks Techniques and App 2023 | 38.37 MB
English | 409 Pages

Title: IoT-enabled Convolutional Neural Networks: Techniques and Applications
Author: Mohd Naved
Year: 2018




Description:
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book  is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:
The basics of neural networks:  Many traditional machine learning models can be understood as special cases of neural networks.  An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.
Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.
Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.
The book is written for graduate students, researchers, and practitioners.   Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

DOWNLOAD:

https://rapidgator.net/file/35faf176f691ec752eccd7e5b7c9edac/Naved_M._IoT-enabled_Convolutional_Neural_Networks_Techniques_and_App_2023.rar
https://uploadgig.com/file/download/18894fed275b2219/Naved_M._IoT-enabled_Convolutional_Neural_Networks_Techniques_and_App_2023.rar


   
   
   




We need your support!
Make a donation to help us stay online
        
Bitcoin (BTC)
bc1q08g9d22cxkawsjlf8etuek2pc9n2a3hs4cdrld
	
Bitcoin Cash (BCH)
qqvwexzhvgauxq2apgc4j0ewvcak6hh6lsnzmvtkem

Ethereum (ETH)
0xb55513D2c91A6e3c497621644ec99e206CDaf239

Litecoin (LTC)
ltc1qt6g2trfv9tjs4qj68sqc4uf0ukvc9jpnsyt59u

USDT (ERC20)
0xb55513D2c91A6e3c497621644ec99e206CDaf239

USDT (TRC20)
TYdPNrz7v1P9riWBWZ317oBgJueheGjATm




Related news:

 

Information

 
  Users of GUESTS are not allowed to comment this publication.